
On the wave-particle interaction and removal of energetic particles
Author(s) -
Umesh Singh
Publication year - 2021
Publication title -
maǧallaẗ al-kuwayt li-l-ʿulūm
Language(s) - English
Resource type - Journals
eISSN - 2307-4116
pISSN - 2307-4108
DOI - 10.48129/kjs.v48i4.9620
Subject(s) - electron , van allen radiation belt , geosynchronous orbit , physics , pitch angle , whistler , ionosphere , electron precipitation , atomic physics , earth's magnetic field , computational physics , cyclotron , field line , range (aeronautics) , charged particle , ion , magnetosphere , magnetic field , geophysics , satellite , nuclear physics , astronomy , materials science , quantum mechanics , composite material
There is always a risk of destruction of man-made satellites by the energetic electrons trapped in Van Allen radiation belts in space. These energetic electrons also pose a biological danger to astronauts. The cyclotron resonance interaction is studied between the whistler-mode waves in the frequency range of ELF (Extremely Low Frequency 300 – 3000 HZ) and VLF (Very Low Frequency 3 – 30 kHz) propagating along geomagnetic field line and counter streaming energetic electron. During this process the pitch angle of energetic electrons reduces. This results in the dumping of these electrons into the lower ionosphere. This makes electrons unable to strike the satellites orbiting in low Earth orbit, Geosynchronous, Sun-synchronous or polar orbit. It is shown that the lifetime values of energetic electrons vary from 2.03 to 227.68 hours at low latitudes. It is shown that these waves can remove these energetic electrons from their path and ensure the safety of satellites.