Dielectric spectroscopy of aluminum oxide (γ-Al2O3)
Author(s) -
M.M. Abdullah
Publication year - 2021
Publication title -
kuwait journal of science
Language(s) - English
Resource type - Journals
eISSN - 2307-4116
pISSN - 2307-4108
DOI - 10.48129/kjs.12885
Subject(s) - dielectric , materials science , dielectric spectroscopy , impurity , crystallite , fourier transform infrared spectroscopy , oxide , high κ dielectric , analytical chemistry (journal) , relaxation (psychology) , dielectric loss , aluminum oxide , aluminium , composite material , chemical engineering , optoelectronics , chemistry , metallurgy , electrode , organic chemistry , psychology , social psychology , engineering , electrochemistry
Aluminum oxide (Al2O3) are continuously demonstrating the functional characteristics in devices. The physiochemical properties of hydrothermally as-grown Aluminum oxide (Al2O3) have been investigated in this research article. The as-prepared material was confirmed as γ- phase formation of Al2O3. The average crystallite size was found ∼ 78 nm, whereas the particles were found in nano scale too. Moreover, the absence of impurity in EDS analysis, and the presence of the bending vibrations of Al-O-Al and Al-O band in FTIR characterization further confirmed the absence of impurity in the material. Evaluated dielectric properties such as a relatively high dielectric constant, and low dielectric loss indicated the good optical quality of γ- Al2O3. Impedance and modulus spectroscopic studies showed the non-Debye type relaxation in γ- Al2O3 with an average relaxation time of 5.8 μs. Overall, the dielectric spectroscopy analysis of γ- Al2O3 indicates the promising applications of γ- Al2O3 in devices as dielectrics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom