
A Deep Learning Approach for Malware and Software Piracy Threat Detection
Author(s) -
Khalid Aldriwish
Publication year - 2021
Publication title -
engineering, technology and applied science research/engineering, technology and applied science research
Language(s) - English
Resource type - Journals
eISSN - 2241-4487
pISSN - 1792-8036
DOI - 10.48084/etasr.4412
Subject(s) - malware , computer science , convolutional neural network , computer security , deep learning , software , internet of things , code (set theory) , artificial intelligence , artificial neural network , machine learning , operating system , set (abstract data type) , programming language
Internet of Things (IoT) -based systems need to be up to date on cybersecurity threats. The security of IoT networks is challenged by software piracy and malware attacks, and much important information can be stolen and used for cybercrimes. This paper attempts to improve IoT cybersecurity by proposing a combined model based on deep learning to detect malware and software piracy across the IoT network. The malware’s model is based on Deep Convolutional Neural Networks (DCNNs). Apart from this, TensorFlow Deep Neural Networks (TFDNNs) are introduced to detect software piracy threats according to source code plagiarism. The investigation is conducted on the Google Code Jam (GCJ) dataset. The conducted experiments prove that the classification performance achieves high accuracy of about 98%.