z-logo
open-access-imgOpen Access
Deep Belief Network Approach for Recognition of Cow using Cow Nose Image Pattern
Author(s) -
Rotimi-Williams Bello,
Abdullah Zawawi Talib,
Ahmad Sufril Azlan Mohamed
Publication year - 2021
Publication title -
walailak journal of science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.146
H-Index - 15
eISSN - 2228-835X
pISSN - 1686-3933
DOI - 10.48048/wjst.2021.8984
Subject(s) - artificial intelligence , deep belief network , biometrics , pattern recognition (psychology) , computer science , identification (biology) , deep learning , feature (linguistics) , feature extraction , artificial neural network , computer vision , linguistics , philosophy , botany , biology
A deep belief network is proposed to learn the discriminatory cow nose image texture features for a robust representation of cows' features and recognition using a cow nose image pattern. Deep belief network is a deep learning model that is graphically based, and it is applied to learn the extracted feature sets of cow nose image pattern for hierarchical representation by using the training details of the training phase of the system proposed. Deep belief network application is useful in animal biometrics to monitor the animals through its recognition and identification techniques. Biometrics application emanated from computer vision and pattern recognition. Its application plays an important role in registering and monitoring animals through its recognition and identification techniques. Because the existing physical-based feature representation methods and manual visual feature extractions cannot handle animal recognition, the deep belief network technique is proposed using the animal's visual attributes. An experiment performed under a controlled condition of identification indicated that the proposed method outshines the existing methods with approximately 98.99 % accuracy. Four thousand cow nose images from an existing database of 400 individual cows contribute to the community of research, especially in the animal biometrics for identification of individual cow.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here