
Salt Stress-Responsive Protein Interaction in Hordeum vulgare
Author(s) -
A. Somasundaram,
Somasundaram Arumugam,
Neeru Sood
Publication year - 2019
Publication title -
walailak journal of science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.146
H-Index - 15
eISSN - 2228-835X
pISSN - 1686-3933
DOI - 10.48048/wjst.2020.5029
Subject(s) - hordeum vulgare , kegg , biology , osmotic shock , botany , apx , hordeum , biochemistry , computational biology , microbiology and biotechnology , gene , oxidative stress , gene expression , poaceae , transcriptome , superoxide dismutase
Salt stress affects crop productivity by altering the biology of the plant and limiting productivity. Hordeum vulgare is the most tolerant cereal crop, with rich genetic resources. The underlying molecular mechanism involved in salt stress response is yet to be comprehensively addressed. A total of 305 proteins are involved in the network. We attempted to find relationships between a few representative stress-responsive proteins of osmotic (pip1), ionic (K+/Na+ ratio in the leaf sheath, HvHAK, HAK4, NHX1 and Ha1), and oxidative stress (APX, CAT1, SOD1) from the public protein database to identify the most influential protein in the network. Further, the salt response proteins were analyzed for their enriched protein domains, Kyoto Encyclopedia of Genes and Genomes pathways, molecular functions, and cell localization. The graph theory analysis of the large data could provide clues for the identification of potential biomarkers for salt stress in barley. An experiment was performed in three accessions of H. vulgare to identify the reliability of the theoretical network relationship in biological systems. The expression of the above-mentioned proteins was further experimentally proven based on the expression and assay.