
Risk Assessment of Emitted Particle-bound Polycyclic Aromatic Hydrocarbons from Lignite-biomass Pelletization Burning: Size Distribution and Human Health Effects
Author(s) -
Rithy Kan,
Thaniya Kaosol,
Perapong Tekasakul,
Surajit Tekasakul
Publication year - 2018
Publication title -
walailak journal of science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.146
H-Index - 15
eISSN - 2228-835X
pISSN - 1686-3933
DOI - 10.48048/wjst.2019.4519
Subject(s) - carcinogen , chemistry , environmental chemistry , particle size , pelletizing , pellets , particle size distribution , particle (ecology) , naphthalene , analytical chemistry (journal) , organic chemistry , materials science , oceanography , composite material , geology
Risk assessment of emitted particle polycyclic aromatic hydrocarbons (PAHs) from lignite-biomass pelletization burning focusing on size distribution and human health effects are investigated. The particles and PAHs are experimented by a tube furnace and high performance liquid chromatography coupled diode array and fluorescence detectors (HPLC-DAD/FLD), respectively. The carcinogenic, mutagenic, and toxic potencies of PAHs are also discussed in relative to the size distribution of emitted particle PAHs. The results indicate that the carcinogenic, mutagenic, and toxic potencies of PAHs are like to accumulate in the ultrafine particles finer than 0.65 µm. The ultrafine particles contribute the largest PAHs existences of carcinogenic, mutagenic and toxic substances; even though they register in the small mass fraction of PAHs. Moreover, the co-pellets burning can reduce the values of carcinogenic PAHs, carcinogenic equivalency quotients (BaP-TEQ), mutagenic equivalency quotients (BaP-MEQ), and toxic equivalency quotients (TCDD-TEQ) by more than 60%.