
AN FPGA IMPLEMENTATION OF MODIFIED DECISION BASED UNSYMMETRICAL TRIMMED MEDIAN FILTER FOR THE REMOVAL OF SALT AND PEPPER NOISE IN DIGITAL IMAGES
Author(s) -
Chaitanya Bethina,
M. Premkumar
Publication year - 2014
Publication title -
international journal of electronic signal and systems
Language(s) - English
Resource type - Journals
ISSN - 2231-5969
DOI - 10.47893/ijess.2014.1159
Subject(s) - salt and pepper noise , median filter , noise reduction , grayscale , noise (video) , computer science , impulse noise , pixel , artificial intelligence , noise spectral density , image noise , gaussian noise , computer vision , filter (signal processing) , mathematics , algorithm , image processing , noise figure , image (mathematics) , telecommunications , amplifier , bandwidth (computing)
A modified decision based unsymmetrical trimmed median filter algorithm for the restoration of gray scale, and color images that are highly corrupted by salt and pepper noise is proposed in this paper. Images are often corrupted by impulse noise during acquisition and transmission; thus, an efficient noise suppression technique is required before subsequent image processing operations. Median filter (MF) is widely used in noise removal methods due to its denoising capability and computational efficiency. However, it is effective only for low noise densities. Extensive experimental results demonstrate that our method can obtain better performances in terms of both subjective and objective evaluations than denoising techniques. Especially, the proposed method can preserve edges very well while removing salt and pepper noise. Modified Decision Based Algorithm (MDBA), and Progressive Switched Median Filter (PSMF) shows better results at low and medium noise densities. At high noise densities, their performance is poor. A new algorithm to remove high-density salt and pepper noise using modified Decision Based Unsymmetric Trimmed Median Filter (DBUTMF) is proposed. The proposed algorithm replaces the noisy pixel by trimmed median. Since our algorithm is algorithmically simple, it is very suitable to be applied to many real-time applications and higher noise densities. When all the pixel values are 0’s and 255’s then the noise pixel is replaced by mean value of all the elements present in the selected window. The proposed algorithm is tested against different grayscale and color images and it gives better Peak Signal-to-Noise Ratio (PSNR) and Image Enhancement Factor (IEF).