z-logo
open-access-imgOpen Access
MODELS OF ROBOT’S WHEEL-MOVER BEHAVIOR ON FERROMAGNETIC SURFACES
Author(s) -
Mykyta Taranov,
Yuriy Kondratenko
Publication year - 2018
Publication title -
international journal of computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.184
H-Index - 11
eISSN - 2312-5381
pISSN - 1727-6209
DOI - 10.47839/ijc.17.1.944
Subject(s) - computer science , robot , mobile robot , prime mover , mechanical engineering , simulation , automotive engineering , engineering , artificial intelligence
The mobile robots which can move on complicated working surfaces play a significant role in the automation of various technological processes, in particular, ship repair, fire fighting, inspection of welding quality, rescue operations, etc. This work is a continuation of the authors’ investigation of the mobile robot’s moving on inclined and vertical ferromagnetic surfaces based on a magnetically operated wheel-mover. Special attention is paid to constructing magnetically operated wheel-mover with twelve legs and modeling of the robot’s wheel-mover behavior in different working modes including investigations of the wheel-mover center trajectory, behavior of control signals, etc. Geometrical dependences between a number of wheel-mover legs and deviation of the wheel center path from horizontal line are described. In the present article the modeling results for movement of the wheel-mover on both plain and non-plain surfaces are discussed. For this purpose, the mathematical model of the wheel-mover was created and analyzed and the results were verified using a simulation approach.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom