z-logo
open-access-imgOpen Access
DENSITY FUNCTIONAL THEORY INVESTIGATION FOR INSB NANOCRYSTAL DIAMANTANE DRUG CARRIER
Author(s) -
Methaq Talib Matrood,
Aqeel Adil Hasan
Publication year - 2021
Publication title -
minar international journal of applied sciences and technology
Language(s) - English
Resource type - Journals
ISSN - 2717-8234
DOI - 10.47832/2717-8234.2-3.3
Subject(s) - nanomedicine , nanoparticle , density functional theory , nanocrystal , homo/lumo , nanotechnology , materials science , chemistry , computational chemistry , molecule , organic chemistry
Nanomedicine remains the medicinalrequest of nanotechnology. Nanodrugvarietiesafter the medicinalrequests of nanoparticles, to nanoelectronic biosensors, thenuniform possible future applications of particle nanotechnology.Nanoparticle of medicationtransporters are optimized aimed atpreoccupation of medicationsfinishedbreathtreatment. Demonstrating and imitation of nanocrystal limits of the theophylline (C7H8N4O2)byindium – antimony (In7Sb7H20 (in diamantane constructionhave been performed by Gaussian 09 program. DFT hasremainedused for InSb nanoparticle, theophyllinemedication. Optimization and frequency on the ground national level,PBEPBE, 3-21G basis sets consumesremainedexamined. The custodiesaimed ataltogetherremainequivalenttoward zero custodies. The geometry optimization by means of both methods (PBE) for InSb diamantane nanoparticles and theophyllinedrug has been originate cutting-edgedecent agreement by experimental dataMolecular detour theory has been used to discovery highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies. Total energy, ionization potential and electron empathy have beenintendedaimed atInSbnanostructure bytheophyllinemedication.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here