
A Comparative Study of Parameters Measuring in Data Mining Function Using SVM
Author(s) -
Meghna Utmal
Publication year - 2021
Publication title -
international journal of computer science and mobile computing
Language(s) - English
Resource type - Journals
ISSN - 2320-088X
DOI - 10.47760/ijcsmc.2021.v10i08.003
Subject(s) - computer science , support vector machine , machine learning , artificial intelligence , data mining , categorization , variety (cybernetics) , precision and recall
Due to the vast amount of data available on the internet nowadays, it is necessary to categorise the data, and fast, accurate, and resilient algorithms for data analysis are required. Support vector machines (SVMs) are a form of machine learning technique that is commonly used to solve a variety of statistical learning issues. It's been designed as a reliable categorization tool, and it's especially useful when there's a lot of data. Machine learning is an area of artificial intelligence (AI) and computer science that focuses on using data and algorithms to mimic the way humans learn, with the goal of steadily improving accuracy. Algorithms are trained to create classifications by using statistical approaches. These should ideally have an impact on important growth measures. In this study, we found that employing the Support Vector Machine technique provides the best accuracy and efficiency for our dataset. Our work is based on the evaluation of parameters like accuracy, recall and precision.