z-logo
open-access-imgOpen Access
Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma
Author(s) -
Kemka Ihemelandu,
Chukwuemeka Ihemelandu
Publication year - 2021
Publication title -
journal of student research
Language(s) - English
Resource type - Journals
ISSN - 2167-1907
DOI - 10.47611/jsrhs.v10i3.2130
Subject(s) - convolutional neural network , hyperparameter , computer science , artificial intelligence , machine learning , artificial neural network , deep learning , selection (genetic algorithm) , pattern recognition (psychology)
The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here