z-logo
open-access-imgOpen Access
Mg-Cr Layered Double Hydroxide Intercalated Oxalic Anion to Remove Cationic Dye Solutions: Rhodamine B and Methylene Blue
Publication year - 2020
Publication title -
journal of environmental treatment techniques
Language(s) - English
Resource type - Journals
ISSN - 2309-1185
DOI - 10.47277/jett/9(2)391
Subject(s) - rhodamine b , adsorption , hydroxide , methylene blue , layered double hydroxides , chemistry , intercalation (chemistry) , desorption , aqueous solution , coprecipitation , nuclear chemistry , inorganic chemistry , langmuir adsorption model , organic chemistry , catalysis , photocatalysis
A MgCr-based layered double hydroxide (LDH) was synthesized by a coprecipitation method, followed by an intercalation process using an oxalic anion. The materials were characterized using X-ray diffraction analysis, FT-IR spectroscopy, and pH pzc measurement. The materials were then applied as adsorbents for removal of methylene blue (MB) and rhodamine B (RhB) from aqueous solution. Pristine Mg/Cr LDH exhibited RhB adsorption capacity of 32.154 mg g⁻1, whereas the use of intercalated Mg/Cr LDH caused an increase in the capacity (139.526 mg g⁻1). Kinetic studies indicated that the dye adsorption using both LDHs followed a pseudo-second-order kinetic model; the K2 values of pristine and modified Mg/Cr LDH for RhB and MB were 6.970, 0.001, 0.426, and 2.056 g mg⁻1 min⁻1, respectively. The thermodynamic study identified that the adsorption of both dyes onto the LDHs was a spontaneous process and can be classified as physical adsorption with adsorption energies of <40 kJ/mol. Moreover, the desorption and regeneration experiments indicated the high economic feasibility and reusability of the LDHs. By using HCl as the optimal solvent, the LDHs could desorb as much as 98% of the dye and could be used as adsorbents with high adsorption capacity over three cycles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here