
A NEW FAMILIES OF GAUSS k-JACOBSTHAL NUMBERS AND GAUSS k-JACOBSTHAL-LUCAS NUMBERS AND THEIR POLYNOMIALS
Author(s) -
Engi̇n Özkan,
Merve Taştan
Publication year - 2020
Publication title -
journal of science and arts
Language(s) - English
Resource type - Journals
eISSN - 2068-3049
pISSN - 1844-9581
DOI - 10.46939/j.sci.arts-20.4-a10
Subject(s) - mathematics , gauss , difference polynomials , combinatorics , orthogonal polynomials , discrete mathematics , algebra over a field , pure mathematics , physics , quantum mechanics
In this paper, we define the new families of Gauss k-Jacobsthal numbers and Gauss k-Jacobsthal-Lucas numbers. We obtain some exciting properties of the families. We give the relationships between the family of the Gauss k-Jacobsthal numbers and the known Gauss Jacobsthal numbers, the family of the Gauss k-Jacobsthal-Lucas numbers and the known Gauss Jacobsthal-Lucas numbers. We also define the generalized polynomials for these numbers. Further, we obtain some interesting properties of the polynomials. In addition, we give the relationships between the generalized Gauss k-Jacobsthal polynomials and the known Gauss Jacobsthal polynomials, the generalized Gauss k-Jacobsthal-Lucas polynomials and the known Gauss Jacobsthal-Lucas polynomials. Furthermore, we find the new generalizations of these families and the polynomials in matrix representation. Then we prove Cassini’s Identities for the families and their polynomials.