z-logo
open-access-imgOpen Access
Investigation of Background Radiation Level Within X-ray Machine Environment
Author(s) -
F. Gbaorun,
T. Daniel
Publication year - 2015
Publication title -
nigerian journals of pure and applied sciences (benue online)
Language(s) - English
Resource type - Journals
ISSN - 2705-3997
DOI - 10.46912/napas.20
Subject(s) - ionizing radiation , background radiation , radiation , geiger counter , nuclear medicine , radiation dose , dose rate , x ray , effective dose (radiation) , radiation protection , physics , ionization chamber , irradiation , equivalent dose , ionization , optics , medicine , nuclear physics , medical physics , ion , quantum mechanics
In this study, a Geiger Muller ionization counter has been used to investigate the variation of background radiation dose level with time in a typical x-ray machine room and its environment. This is to monitor the effect of x-ray exposure on the background ionizing radiation level. The results showed that within a period of 3 hours, the cumulative background radiation dose in the x-ray room grew from s s Gy to around 84 . 90 ́ 10 - 10 - an initial level of 38 . 78 ́ Gy compared with nearby rooms where the s cumulative radiation grew from almost zero to a maximum value of about 46 . 9 ́ Gy within the 10 - same period. It was observed that after a radiation exposure from the machine, the background s radiation dose rate took about 25 minutes to decay from a maximum level of around 45 ́ Gy/hr to 10 - - s 17 . 47 ́ 10 the background level about Gy/hr which was found to be higher than the background dose rates in other nearby locations. While the dose rate in the x-ray machine room was higher than the s 10 - maximum dose limit of 12 ́ Gy/hr recommended for members of the public by the International Committee for Radiation Protection (ICRP), the dose rates in the other locations studied in the neighbourhood of the x-ray machine were within the limit.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here