z-logo
open-access-imgOpen Access
High-Precision Fe Isotope Analysis On MC-ICPMS Using A 57Fe-58Fe Double Spike Technique
Author(s) -
Yongsheng He
Publication year - 2022
Publication title -
atomic spectroscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.294
H-Index - 30
eISSN - 2708-521X
pISSN - 0195-5373
DOI - 10.46770/as.2022.062
Subject(s) - chemistry , analytical chemistry (journal) , isotope , inductively coupled plasma mass spectrometry , mass spectrometry , chromatography , physics , quantum mechanics
Herein we report procedures based on multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for high-precision Fe isotopic analysis using a 57Fe-58Fe double spike technique. Iron purification was achieved using AG1-X8 in HCl media following previously or newly established procedures. In the new procedure, smaller columns with 4 mm diameter were used, containing 0.4 mL AG1-X8, thus greatly reducing the operation time and the amount of acid and resin consumed compared to the previously established method using 1 mL resin. Potential trace Ni interference on 58Fe was suppressed by increasing the total Fe ion intensity to ≥ 120 V. Measurements of GSB Fe solutions doped with mono-elements demonstrated that a mass bias correction by the 57Fe-58Fe double spike was robust if Ca/Fe ≤ 1.0, Al/Fe ≤ 1.0, Cu/Fe ≤ 1.0, Co/Fe ≤ 0.1, Ni/Fe ≤ 10-4, and Cr/Fe ≤ 10-4. Monitoring of pure Fe standard solutions, viz. IRMM-014 and NIST3126a, and geological reference materials, viz. JP-1, BHVO-2, W-2a, GSP-2, and COQ-1, over nine months yielded δ56Fe (relative to IRMM-014) values of 0.003 ± 0.013‰ (2 SD, N = 20), 0.368 ± 0.011‰ (2 SD, N = 30), 0.019 ± 0.018‰ (2 SD, N = 15), 0.109 ± 0.017‰ (2 SD, N = 30), 0.049 ± 0.018‰ (2 SD, N = 17), 0.155 ± 0.018‰ (2 SD, N = 14), and -0.066 ± 0.022‰ (2 SD, N = 20), respectively, consistent with the recommended values within quoted errors. Based on repeated analyses of the standards, the long-term precision of our double spike method is better than 0.02‰ for δ56Fe on average, proving its ability to distinguish small isotope fractionation among high-temperature samples.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom