z-logo
open-access-imgOpen Access
New Quartz And Zircon Si Isotopic Reference Materials For Precise And Accurate SIMS Isotopic Microanalysis
Author(s) -
Yu Liu,
XianHua Li
Publication year - 2022
Publication title -
atomic spectroscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.294
H-Index - 30
eISSN - 2708-521X
pISSN - 0195-5373
DOI - 10.46770/as.2021.1110
Subject(s) - quartz , microanalysis , microprobe , chemistry , analytical chemistry (journal) , zircon , isotope , secondary ion mass spectrometry , impurity , mass spectrometry , mineralogy , materials science , metallurgy , geology , chromatography , geochemistry , physics , organic chemistry , quantum mechanics
Here we report the Si isotope compositions of four potential reference materials, including one fused quartz glass (Glass-Qtz), one natural quartz (Qinghu-Qtz), and two natural zircons (Qinghu-Zir and Penglai-Zir), suitable for in-situ Si isotopic microanalysis. Repeated SIMS (Secondary Ion Mass Spectrometry) analyses demonstrate that these materials are more homogeneous in Si isotopes (with the spot-to-spot uncertainty of 0.090-0.102‰), compared with the widely used NIST RM 8546 (previously NBS-28) quartz standard (with the spot-to-spot uncertainty poorer than 0.16‰). Based on the solution-MC-ICP-MS determination, the recommended 30Si values are −0.10 ± 0.04 ‰ (2SD), −0.03 ± 0.05 ‰ (2SD), −0.45 ± 0.06 ‰ (2SD), and −0.34 ± 0.06 ‰ (2SD), for Glass-Qtz, Qinghu-Qtz, Qinghu-Zir, and Penglai-Zir, respectively. Our results reveal no detectable matrix effect on SIMS Si isotopic microanalysis between the fused quartz glass (Glass-Qtz) and natural quartz (Qinghu-Qtz) standards. Therefore, we propose that this synthetic quartz glass may be used as an alternative, more homogenous standard for SIMS Si isotopic microanalysis of natural quartz samples.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here