
New Quartz And Zircon Si Isotopic Reference Materials For Precise And Accurate SIMS Isotopic Microanalysis
Author(s) -
Yu Liu,
XianHua Li
Publication year - 2022
Publication title -
atomic spectroscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.294
H-Index - 30
eISSN - 2708-521X
pISSN - 0195-5373
DOI - 10.46770/as.2021.1110
Subject(s) - quartz , microanalysis , microprobe , chemistry , analytical chemistry (journal) , zircon , isotope , secondary ion mass spectrometry , impurity , mass spectrometry , mineralogy , materials science , metallurgy , geology , chromatography , geochemistry , physics , organic chemistry , quantum mechanics
Here we report the Si isotope compositions of four potential reference materials, including one fused quartz glass (Glass-Qtz), one natural quartz (Qinghu-Qtz), and two natural zircons (Qinghu-Zir and Penglai-Zir), suitable for in-situ Si isotopic microanalysis. Repeated SIMS (Secondary Ion Mass Spectrometry) analyses demonstrate that these materials are more homogeneous in Si isotopes (with the spot-to-spot uncertainty of 0.090-0.102‰), compared with the widely used NIST RM 8546 (previously NBS-28) quartz standard (with the spot-to-spot uncertainty poorer than 0.16‰). Based on the solution-MC-ICP-MS determination, the recommended 30Si values are −0.10 ± 0.04 ‰ (2SD), −0.03 ± 0.05 ‰ (2SD), −0.45 ± 0.06 ‰ (2SD), and −0.34 ± 0.06 ‰ (2SD), for Glass-Qtz, Qinghu-Qtz, Qinghu-Zir, and Penglai-Zir, respectively. Our results reveal no detectable matrix effect on SIMS Si isotopic microanalysis between the fused quartz glass (Glass-Qtz) and natural quartz (Qinghu-Qtz) standards. Therefore, we propose that this synthetic quartz glass may be used as an alternative, more homogenous standard for SIMS Si isotopic microanalysis of natural quartz samples.