z-logo
open-access-imgOpen Access
Теория Титчмарша - Вейля сингулярного уравнения Хана - Штурма - Лиувилля
Author(s) -
Bilender P. Allahverdiev,
Hüseyin Tuna
Publication year - 2021
Publication title -
vladikavkazskij matematičeskij žurnal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.126
H-Index - 2
eISSN - 1814-0807
pISSN - 1683-3414
DOI - 10.46698/y9113-7002-9720-u
Subject(s) - omega , sturm–liouville theory , mathematics , square integrable function , lambda , liouville equation , type (biology) , operator (biology) , hilbert space , mathematical physics , combinatorics , pure mathematics , mathematical analysis , physics , quantum mechanics , ecology , biochemistry , chemistry , repressor , gene , transcription factor , quantum , biology , boundary value problem
In this work, we will consider the singularHahn--Sturm--Liouville difference equation defined by$-q^{-1}D_{-\omega q^{-1},q^{-1}}D_{\omega ,q}y( x) +v(x) y( x)=\lambda y(x)$, $x\in (\omega _{0},\infty),$ where $\lambda$ is acomplex parameter, $v$ is a real-valued continuous function at$\omega _{0}$ defined on $[\omega _{0},\infty)$. These typeequations are obtained when the ordinary derivative in the classicalSturm--Liouville problem is replaced by the $\omega,q$-Hahndifference operator $D_{\omega,q}$. We develop the $\omega,q$-analogue of the classicalTitchmarsh--Weyl theory for such equations. In other words, we study the existence ofsquare-integrable solutions of the singular Hahn--Sturm--Liouvilleequation. Accordingly, first we define an appropriate Hilbertspace in terms of Jackson--N\"{o}rlund integral and then we studyfamilies of regular Hahn--Sturm--Liouville problems on$[\omega_{0},q^{-n}]$, $n\in \mathbb{N}$. Then we define a family ofcircles that converge either to a point or a circle. Thus, we willdefine the limit-point, limit-circle cases in the Hahn calculussetting by using Titchmarsh's technique.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here