z-logo
open-access-imgOpen Access
Partial integral operators of Fredholm type on Kaplansky-Hilbert module over $L_0$
Author(s) -
Yu. Kh. Èshkabilov,
R R Kucharov
Publication year - 2021
Publication title -
vladikavkazskij matematičeskij žurnal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.126
H-Index - 2
eISSN - 1814-0807
pISSN - 1683-3414
DOI - 10.46698/w5172-0182-0041-c
Subject(s) - mathematics , omega , nabla symbol , type (biology) , operator theory , operator (biology) , eigenvalues and eigenvectors , pure mathematics , combinatorics , mathematical analysis , physics , ecology , biochemistry , chemistry , repressor , quantum mechanics , gene , transcription factor , biology
The article studies some characteristic properties of self-adjoint partiallyintegral operators of Fredholm type in the Kaplansky-Hilbert module$L_{0}\left[L_{2}\left(\Omega_{1}\right)\right]$ over $L_{0}\left(\Omega_{2}\right)$. Somemathematical tools from the theory of Kaplansky-Hilbert module are used. In theKaplansky-Hilbert module $L_{0}\left[L_{2}\left(\Omega_{1}\right)\right]$ over$ L_{0} \left (\Omega _ {2} \right)$ we consider the partially integral operator ofFredholm type $T_{1}$ ($ \Omega_{1} $ and $\Omega_{2} $ areclosed bounded sets in $ {\mathbb R}^{\nu_{1}}$ and $ {\mathbb R}^{\nu_{2}},$$\nu_{1}, \nu_{2} \in {\mathbb N} $, respectively). Theexistence of $ L_{0} \left (\Omega _ {2} \right) $ nonzero eigenvalues for any self-adjointpartially integral operator $T_{1}$ is proved; moreover, it is shown that $T_{1}$ hasfinite and countable number of real $L_{0}(\Omega_{2})$-eigenvalues.In the latter case, the sequence $ L_{0}(\Omega_{2})$-eigenvalues is orderconvergent to the zero function. It is also established that theoperator $T_{1}$ admits an expansion into a series of $\nabla_{1}$-one-dimensional operators.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here