
Finding an Unknown Rapidly Oscillating Right-Hand Side in Multidimensional First-Order Hyperbolic System
Author(s) -
P. V. Babich
Publication year - 2022
Publication title -
vladikavkazskij matematičeskij žurnal
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.126
H-Index - 2
eISSN - 1814-0807
pISSN - 1683-3414
DOI - 10.46698/u8315-8858-4224-f
Subject(s) - order (exchange) , mathematics , control theory (sociology) , computer science , artificial intelligence , business , control (management) , finance
В работе рассматривается задача Коши с нулевым начальным условием для многомерной линейной гиперболической системы дифференциальных уравнений первого порядка с постоянными коэффициентами и быстро осциллирующей по времени правой частью. Каждая компонента последней является произведением двух функций, одна из которых зависит только от пространственной переменной, а вторая - только от временной и "быстрой временной" переменных. Функции-сомножители, зависящие от пространственной переменной, известны, а зависящие от времени быстро осциллирующие сомножители неизвестны. Поставлена и решена обратная коэффициентная задача о восстановлении последних по некоторым дополнительным сведениям о частичной асимптотике решения задачи Коши в том случае, когда правая часть системы известна (прямая задача). Эти дополнительные сведения состоят в задании значений нескольких первых коэффициентов асимптотики, вычисленных в определенной точке пространства. Такой вид условия переопределения (дополнительного условия) отличает постановку обратной задачи от постановки, используемой в классической теории обратных коэффициентных задач, где условия переопределения ставятся на точное решение. Таким образом, в работе постановка и решение обратной задачи предваряются решением задачи, состоящей в построении и обосновании частичной асимптотики решения. На этом этапе, в~частности, определяется, сколько первых коэффициентов асимптотического разложения решения будет задействовано в условии переопределения обратной задачи. Отметим еще, что эволюционные задачи с быстро осциллирующими данными играют важную роль в математике и ее приложениях уже потому, что моделируют многие физические процессы; к примеру, связанные с высокочастотными механическими, электромагнитными или иными колебаниями. При этом вопрос о построении для таких задач нескольких первых членов асимптотики решения нередко является существенно более простым, нежели построение собственно решения (а также вычисленние его значений в нужных точках). Поэтому развитие для быстро осциллирующих задач теории обратных коэффициентных задач представляется несомненно актуальным.