z-logo
open-access-imgOpen Access
Nondegenerate Canonical Solutions of a Certain System of Functional Equations
Author(s) -
В. А. Кыров
Publication year - 2022
Publication title -
vladikavkazskij matematičeskij žurnal
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.126
H-Index - 2
eISSN - 1814-0807
pISSN - 1683-3414
DOI - 10.46698/u7680-5193-0172-d
Subject(s) - bar (unit) , physics , crystallography , chemistry , meteorology
Установление возможности вложения неаддитивной двуметрической феноменологически симметричной геометрии ранга $(2,2)$ с функцией $g(x, y, \xi, \eta) =(g^{1}, g^{2}) $ в двуметрическую феноменологически симметричную геометрию ранга $(3,2)$ с~функцией $f(x, y, \xi, \eta, \mu, \nu) =(f^{1}, f^{2}) $ приводит к задаче нахождения у соответствующей системы $ f(\bar{x}, \bar{y}, \bar{\xi}, \bar{\eta}, \bar{\mu}, \bar{\nu}) = \chi(g(x, y, \xi, \eta), \mu, \nu) $ двух функциональных уравнений невырожденных решений. Данная система решается, поскольку функции $g$ и $f$ ранее известны. Тогда эта система принимает явный вид: $\bar{x}\bar{\xi}+\bar{y}\bar{\mu}=\chi ^{1}((x+\xi)y,(x+\xi)\eta,\mu,\nu ),$ $\bar{x}\bar{\eta}+\bar{y}\bar{\nu}=\chi ^{2}((x+\xi )y,(x+\xi )\eta ,\mu ,\nu).$ Общее решение такой системы найти трудно, однако можно сначала найти каноническое решение, связанное с жордановой формой матриц второго порядка, поскольку их количество мало, а затем по нему определить общее решение с помощью подходящего невырожденного преобразования матриц и векторов. Такая переформулировка основной проблемы делает ее более простой и интересной в математическом смысле.В процессе поиска канонических решений исходной системы функциональных уравнений сначала дифференцируем по переменным $x$ и $\xi$, в результате получаем систему дифференциальных уравнений с матрицей коэффициентов $A$ общего вида: $\left(\!\begin{array}{c} {\bar{x}_{x}} \\ {\bar{y}_{x}} \end{array}\!\right)=A\left(\!\begin{array}{c} {\bar{x}} \\ {\bar{y}} \end{array}\!\right)$. Доказывается, что матрицу $A$ можно привести к жорданову виду. Затем решается система дифференциальных уравнений с такой жордановой матрицей. Далее, с решениями системы дифференциальных уравнений возвращается в исходную систему функциональных уравнений, откуда находятся дополнительные ограничения. В~итоге получаются невырожденные канонические решения исходной системы функциональных уравнений. По этим каноническим решениям затем записывается общие решения исходной системы.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here