
Order Properties of Homogeneous Orthogonally Additive Polynomials
Author(s) -
Z. A. Kusraeva
Publication year - 2021
Publication title -
vladikavkazskij matematičeskij žurnal
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.126
H-Index - 2
eISSN - 1814-0807
pISSN - 1683-3414
DOI - 10.46698/l0779-9998-4272-b
Subject(s) - homogeneous , order (exchange) , mathematics , pure mathematics , combinatorics , economics , finance
Статья представляет собой обзор результатов автора о строении ортогонально аддитивных однородных полиномов в векторных, банаховых и квазибанаховых решетках. В ходе изложения приводится сравнительный анализ с результатами других авторов, занимающихся данным направлением. Метод исследования, основанный на линеаризации посредством степени векторной решетки и канонического ортогонально аддитивного полинома, представлен в \S 1. Далее, в \S 2 приводится несколько непосредственных приложений этого метода к ортогонально аддитивным однородным полиномам: критерий интегральной представимости, существование одновременного продолжения с мажорирующей подрешетки, характеризация крайних продолжений. \S 3 содержит полное описание и мультипликативное представление однородных полиномов, сохраняющих дизъюнктность. \S 4 посвящен решению проблемы компактного и слабо компактного доминирования (мажорации) для однородных полиномов в банаховых решетках. В \S 5 рассматриваются свойства выпуклости и вогнутости индивидуального ортогонально аддитивного однородного полинома между квазибанаховыми решетками, а в \S 6 выясняются условия, при которых квазибанахова решетка однородных ортогонально аддитивных полиномов является $(p,q)$-выпуклой, $(p,q)$-вогнутой, геометрически выпуклой. В \S 7 дается характеризация и аналитическое описание полиномов, допускающих представление в виде конечной суммы полиномов, сохраняющих дизъюнктность. Наконец, в \S 8 сформулированы нерешенные задачи, представляющие существенный интерес для дальнейшего развития теории.