
Evaluation of Pan-Sharpening Techniques Using Lagrange Optimization
Author(s) -
Mutum Bidyarani Devi,
R. Devanathan
Publication year - 2020
Publication title -
advances in technology innovation
Language(s) - English
Resource type - Journals
eISSN - 2518-2994
pISSN - 2415-0436
DOI - 10.46604/aiti.2020.4288
Subject(s) - panchromatic film , sharpening , multispectral image , image resolution , image fusion , pixel , mean squared error , computer science , artificial intelligence , lagrange multiplier , computer vision , mathematics , image (mathematics) , pattern recognition (psychology) , statistics , mathematical optimization
Earth’s observation satellites, such as IKONOS, provide simultaneously multispectral and panchromatic images. A multispectral image comes with a lower spatial and higher spectral resolution in contrast to a panchromatic image which usually has a high spatial and a low spectral resolution. Pan-sharpening represents a fusion of these two complementary images to provide an output image that has both spatial and spectral high resolutions. The objective of this paper is to propose a new method of pan-sharpening based on pixel-level image manipulation and to compare it with several state-of-art pansharpening methods using different evaluation criteria. The paper presents an image fusion method based on pixel-level optimization using the Lagrange multiplier. Two cases are discussed: (a) the maximization of spectral consistency and (b) the minimization of the variance difference between the original data and the computed data. The paper compares the results of the proposed method with several state-of-the-art pan-sharpening methods. The performance of the pan-sharpening methods is evaluated qualitatively and quantitatively using evaluation criteria, such as the Chi-square test, RMSE, SNR, SD, ERGAS, and RASE. Overall, the proposed method is shown to outperform all the existing methods.