Open Access
Fast Decryption: a New Feature of Misuse-Resistant AE
Author(s) -
Kazuhiko Minematsu
Publication year - 2020
Publication title -
iacr transaction on symmetric cryptology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.715
H-Index - 10
ISSN - 2519-173X
DOI - 10.46586/tosc.v2020.i3.87-118
Subject(s) - cryptographic nonce , encryption , authenticated encryption , computer science , scheme (mathematics) , computer security , de facto , mathematics , mathematical analysis , political science , law
Misuse-resistant AE (MRAE) is a class of authenticated encryption (AE) that has a resistance against a potential misuse (repeat) of nonce. MRAE has received significant attention from the initial proposal by Rogaway and Shrimpton. They showed a generic MRAE construction called SIV. SIV becomes a de-facto scheme for MRAE, however, one notable drawback is its two-pass operation for both encryption and decryption. This implies that MRAE built on SIV is slower than the integrated nonce-based AE schemes, such as OCB.In this paper, we propose a new method to improve this situation. Particularly, our MRAE proposal (decryption-fast SIV or DFV) allows to decrypt as fast as a plain decryption, hence theoretically doubles its speed from the original SIV, while keeping the encryption speed equivalent to SIV. We present several generic compositions for DFV and their instantiations.