z-logo
open-access-imgOpen Access
A Security Analysis of Deoxys and its Internal Tweakable Block Ciphers
Author(s) -
Carlos Cid,
Tao Huang,
Thomas Peyrin,
Yu Sasaki,
Ling Song
Publication year - 2017
Publication title -
iacr transaction on symmetric cryptology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.715
H-Index - 10
ISSN - 2519-173X
DOI - 10.46586/tosc.v2017.i3.73-107
Subject(s) - block cipher , authenticated encryption , computer science , codebook , block (permutation group theory) , encryption , block cipher mode of operation , parallel computing , algorithm , mathematics , computer security , geometry
In this article, we provide the first independent security analysis of Deoxys, a third-round authenticated encryption candidate of the CAESAR competition, and its internal tweakable block ciphers Deoxys-BC-256 and Deoxys-BC-384. We show that the related-tweakey differential bounds provided by the designers can be greatly improved thanks to a Mixed Integer Linear Programming (MILP) based search tool. In particular, we develop a new method to incorporate linear incompatibility in the MILP model. We use this tool to generate valid differential paths for reduced-round versions of Deoxys-BC-256 and Deoxys-BC-384, later combining them into broader boomerang or rectangle attacks. Here, we also develop a new MILP model which optimises the two paths by taking into account the effect of the ladder switch technique. Interestingly, with the tweak in Deoxys-BC providing extra input as opposed to a classical block cipher, we can even consider beyond full-codebook attacks. As these primitives are based on the TWEAKEY framework, we further study how the security of the cipher is impacted when playing with the tweak/key sizes. All in all, we are able to attack 10 rounds of Deoxys-BC-256 (out of 14) and 13 rounds of Deoxys-BC-384 (out of 16). The extra rounds specified in Deoxys-BC to balance the tweak input (when compared to AES) seem to provide about the same security margin as AES-128. Finally we analyse why the authenticated encryption modes of Deoxys mostly prevent our attacks on Deoxys-BC to apply to the authenticated encryption primitive.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Empowering knowledge with every search

Discover

Journals

Proceedings

Books

Explore

Engineering & Computer Science

Health & Medical Sciences

Humanities, Literature & Arts

Life Sciences & Earth Sciences

Physics & Mathematics

Social Sciences

Chemical & Material Sciences

Business, Economics & Management