Open Access
Tight Security Analysis of EHtM MAC
Author(s) -
Avijit Dutta,
Ashwin Jha,
Mridul Nandi
Publication year - 2017
Publication title -
iacr transaction on symmetric cryptology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.715
H-Index - 10
ISSN - 2519-173X
DOI - 10.46586/tosc.v2017.i3.130-150
Subject(s) - upper and lower bounds , pseudorandom function family , computer science , pseudorandom number generator , probabilistic logic , randomness , salt (chemistry) , random function , message authentication code , theoretical computer science , discrete mathematics , mathematics , combinatorics , cryptography , algorithm , statistics , random variable , chemistry , mathematical analysis , artificial intelligence
The security of a probabilistic Message Authentication Code (MAC) usually depends on the uniqueness of the random salt which restricts the security to birthday bound of the salt size due to the collision on random salts (e.g XMACR). To overcome the birthday bound limit, the natural approach to use (a) either a larger random salt (e.g MACRX3 uses 3n bits of random salt where n is the input and output size of the underlying non-compressing pseudorandom function or PRF) or (b) a PRF with increased domain size (e.g RWMAC or Randomized WMAC). Enhanced Hashthen- Mask (EHtM), proposed by Minematsu in FSE 2010, is the first probabilistic MAC scheme that provides beyond birthday bound security without increasing the randomness of the salt and the domain size of the non-compressing PRF. The author proved the security of EHtM as long as the number of MAC query is smaller than 22n/3 where n is the input size of the underlying non-compressing PRF. In this paper, we provide the exact security bound of EHtM and prove that this construction offers security up to 23n/4 MAC queries. The exactness is shown by demonstrating a matching attack.