
Refined Probability of Differential Characteristics Including Dependency Between Multiple Rounds
Author(s) -
Anne Canteaut,
Eran Lambooij,
Samuel Neves,
Shahram Rasoolzadeh,
Yu Sasaki,
Marc Stevens
Publication year - 2017
Publication title -
iacr transaction on symmetric cryptology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.715
H-Index - 10
ISSN - 2519-173X
DOI - 10.46586/tosc.v2017.i2.203-227
Subject(s) - block cipher , differential (mechanical device) , power analysis , computer science , key (lock) , binary number , algorithm , dependency (uml) , mathematics , theoretical computer science , cryptography , arithmetic , physics , computer security , thermodynamics , software engineering
The current paper studies the probability of differential characteristics for an unkeyed (or with a fixed key) construction. Most notably, it focuses on the gap between two probabilities of differential characteristics: probability with independent S-box assumption, pind, and exact probability, pexact. It turns out that pexact is larger than pind in Feistel network with some S-box based inner function. The mechanism of this gap is then theoretically analyzed. The gap is derived from interaction of S-boxes in three rounds, and the gap depends on the size and choice of the S-box. In particular the gap can never be zero when the S-box is bigger than six bits. To demonstrate the power of this improvement, a related-key differential characteristic is proposed against a lightweight block cipher RoadRunneR. For the 128-bit key version, pind of 2−48 is improved to pexact of 2−43. For the 80-bit key version, pind of 2−68 is improved to pexact of 2−62. The analysis is further extended to SPN with an almost-MDS binary matrix in the core primitive of the authenticated encryption scheme Minalpher: pind of 2−128 is improved to pexact of 2−96, which allows to extend the attack by two rounds.