z-logo
open-access-imgOpen Access
Design of Lightweight Linear Diffusion Layers from Near-MDS Matrices
Author(s) -
Chaoyun Li,
Qingju Wang
Publication year - 2017
Publication title -
iacr transaction on symmetric cryptology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.715
H-Index - 10
ISSN - 2519-173X
DOI - 10.46586/tosc.v2017.i1.129-155
Subject(s) - circulant matrix , mathematics , order (exchange) , hadamard transform , discrete mathematics , combinatorics , mathematical analysis , finance , economics
Near-MDS matrices provide better trade-offs between security and efficiency compared to constructions based on MDS matrices, which are favored for hardwareoriented designs. We present new designs of lightweight linear diffusion layers by constructing lightweight near-MDS matrices. Firstly generic n×n near-MDS circulant matrices are found for 5 ≤ n ≤9. Secondly, the implementation cost of instantiations of the generic near-MDS matrices is examined. Surprisingly, for n = 7, 8, it turns out that some proposed near-MDS circulant matrices of order n have the lowest XOR count among all near-MDS matrices of the same order. Further, for n = 5, 6, we present near-MDS matrices of order n having the lowest XOR count as well. The proposed matrices, together with previous construction of order less than five, lead to solutions of n×n near-MDS matrices with the lowest XOR count over finite fields F2m for 2 ≤ n ≤ 8 and 4 ≤ m ≤ 2048. Moreover, we present some involutory near-MDS matrices of order 8 constructed from Hadamard matrices. Lastly, the security of the proposed linear layers is studied by calculating lower bounds on the number of active S-boxes. It is shown that our linear layers with a well-chosen nonlinear layer can provide sufficient security against differential and linear cryptanalysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here