
The SPEEDY Family of Block Ciphers
Author(s) -
Gregor Leander,
Thorben Moos,
Amir Moradi,
Shahram Rasoolzadeh
Publication year - 2021
Publication title -
iacr transactions on cryptographic hardware and embedded systems
Language(s) - English
Resource type - Journals
ISSN - 2569-2925
DOI - 10.46586/tches.v2021.i4.510-545
Subject(s) - computer science , block cipher , encryption , cipher , triple des , cbc mac , symmetric key algorithm , embedded system , computer hardware , parallel computing , arithmetic , computer network , public key cryptography , mathematics
We introduce SPEEDY, a family of ultra low-latency block ciphers. We mix engineering expertise into each step of the cipher’s design process in order to create a secure encryption primitive with an extremely low latency in CMOS hardware. The centerpiece of our constructions is a high-speed 6-bit substitution box whose coordinate functions are realized as two-level NAND trees. In contrast to other low-latency block ciphers such as PRINCE, PRINCEv2, MANTIS and QARMA, we neither constrain ourselves by demanding decryption at low overhead, nor by requiring a super low area or energy. This freedom together with our gate- and transistor-level considerations allows us to create an ultra low-latency cipher which outperforms all known solutions in single-cycle encryption speed. Our main result, SPEEDY-6-192, is a 6-round 192-bit block and 192-bit key cipher which can be executed faster in hardware than any other known encryption primitive (including Gimli in Even-Mansour scheme and the Orthros pseudorandom function) and offers 128-bit security. One round more, i.e., SPEEDY-7-192, provides full 192-bit security. SPEEDY primarily targets hardware security solutions embedded in high-end CPUs, where area and energy restrictions are secondary while high performance is the number one priority.