z-logo
open-access-imgOpen Access
Masking Kyber: First- and Higher-Order Implementations
Author(s) -
Joppe W. Bos,
Marc Gourjon,
Joost Renes,
Tobias Schneider,
Christine van Vredendaal
Publication year - 2021
Publication title -
iacr transactions on cryptographic hardware and embedded systems
Language(s) - English
Resource type - Journals
ISSN - 2569-2925
DOI - 10.46586/tches.v2021.i4.173-214
Subject(s) - computer science , implementation , cryptography , binary number , masking (illustration) , computer engineering , theoretical computer science , parallel computing , algorithm , computer hardware , arithmetic , mathematics , programming language , art , visual arts
In the final phase of the post-quantum cryptography standardization effort, the focus has been extended to include the side-channel resistance of the candidates. While some schemes have been already extensively analyzed in this regard, there is no such study yet of the finalist Kyber.In this work, we demonstrate the first completely masked implementation of Kyber which is protected against first- and higher-order attacks. To the best of our knowledge, this results in the first higher-order masked implementation of any post-quantum secure key encapsulation mechanism algorithm. This is realized by introducing two new techniques. First, we propose a higher-order algorithm for the one-bit compression operation. This is based on a masked bit-sliced binary-search that can be applied to prime moduli. Second, we propose a technique which enables one to compare uncompressed masked polynomials with compressed public polynomials. This avoids the costly masking of the ciphertext compression while being able to be instantiated at arbitrary orders.We show performance results for first-, second- and third-order protected implementations on the Arm Cortex-M0+ and Cortex-M4F. Notably, our implementation of first-order masked Kyber decapsulation requires 3.1 million cycles on the Cortex-M4F. This is a factor 3.5 overhead compared to the unprotected optimized implementationin pqm4. We experimentally show that the first-order implementation of our new modules on the Cortex-M0+ is hardened against attacks using 100 000 traces and mechanically verify the security in a fine-grained leakage model using the verification tool scVerif.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here