z-logo
open-access-imgOpen Access
Saber on ARM
Author(s) -
Angshuman Karmakar,
Jose Maria Bermudo Mera,
Sujoy Sinha Roy,
Ingrid Verbauwhede
Publication year - 2018
Publication title -
iacr transactions on cryptographic hardware and embedded systems
Language(s) - English
Resource type - Journals
ISSN - 2569-2925
DOI - 10.46586/tches.v2018.i3.243-266
Subject(s) - computer science , embedded system , key encapsulation , computer hardware , memory footprint , microcontroller , software , clock rate , public key cryptography , parallel computing , chip , encryption , operating system , symmetric key algorithm , telecommunications
The CCA-secure lattice-based post-quantum key encapsulation scheme Saber is a candidate in the NIST’s post-quantum cryptography standardization process. In this paper, we study the implementation aspects of Saber in resourceconstrained microcontrollers from the ARM Cortex-M series which are very popular for realizing IoT applications. In this work, we carefully optimize various parts of Saber for speed and memory. We exploit digital signal processing instructions and efficient memory access for a fast implementation of polynomial multiplication. We also use memory efficient Karatsuba and just-in-time strategy for generating the public matrix of the module lattice to reduce the memory footprint. We also show that our optimizations can be combined with each other seamlessly to provide various speed-memory trade-offs. Our speed optimized software takes just 1,147K, 1,444K, and 1,543K clock cycles on a Cortex-M4 platform for key generation, encapsulation and decapsulation respectively. Our memory efficient software takes 4,786K, 6,328K, and 7,509K clock cycles on an ultra resource-constrained Cortex-M0 platform for key generation, encapsulation, and decapsulation respectively while consuming only 6.2 KB of memory at most. These results show that lattice-based key encapsulation schemes are perfectly practical for securing IoT devices from quantum computing attacks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here