
Investigation on Microbial Fuel Cells Fabricated from Recyclable Materials for Energy Generation and Wastewater Treatment
Author(s) -
Somil Thakur,
Bhaskar Das
Publication year - 2021
Publication title -
nature, environment and pollution technology/nature, environment and pollution technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.154
H-Index - 11
eISSN - 2395-3454
pISSN - 0972-6268
DOI - 10.46488/nept.2021.v20i04.017
Subject(s) - microbial fuel cell , wastewater , electricity generation , cathode , anode , materials science , pulp and paper industry , sewage treatment , substrate (aquarium) , power density , environmental science , environmental engineering , waste management , chemistry , electrode , power (physics) , physics , engineering , oceanography , quantum mechanics , geology
Microbial fuel cells (MFC) have gained focus due to their diversity in operating conditions & substrates for the generation of sustainable green energy. In the present study, novel MFC has been fabricated using the recyclable aluminum can as air-cathode and graphite rod as anode for the treatment of domestic wastewater and simultaneous power generation. Three different substrate (COD) concentrations, high (>800 mg.L-1), medium (250 mg.L-1 - 800 mg.L-1) and low (<250 mg.L-1) were used. The maximum COD removal efficiencies, voltage generation, power densities were found to be 80%, 0.71 V, and 304.46 mW.m-2 respectively in high strength wastewater setup. In both medium and low strength wastewater setups, after 288 hours, the COD was reduced below 50 mg.L-1 thus limiting the electricity generation substantially. Setup with low-strength wastewater produced a maximum CE (%) of 13.80. Overall results showed that although high-strength wastewater produced better and maximum power densities, medium and low-strength wastewater setups were more consistent in energy generation throughout the experiment.