Open Access
Classification of User Comment Using Word2vec and Deep Learning
Author(s) -
Rafly Indra Kurnia,
Abba Suganda Girsang
Publication year - 2021
Publication title -
international journal emerging technology and advanced engineering
Language(s) - English
Resource type - Journals
ISSN - 2250-2459
DOI - 10.46338/ijetae0521_01
Subject(s) - word2vec , computer science , oversampling , rating scale , social media , feature (linguistics) , artificial intelligence , machine learning , sentiment analysis , data mining , information retrieval , data science , world wide web , statistics , mathematics , computer network , linguistics , philosophy , embedding , bandwidth (computing)
This study will classify the text based on the rating of the provider application on the Google Play Store. This research is classification of user comments using Word2vec and the deep learning algorithm in this case is Long Short Term Memory (LSTM) based on the rating given with a rating scale of 1-5 with a detailed rating 1 is the lowest and rating 5 is the highest data and a rating scale of 1-3 with a detailed rating, 1 as a negative is a combination of ratings 1 and 2, rating 2 as a neutral is rating 3, and rating 3 as a positive is a combination of ratings 4 and 5 to get sentiment from users using SMOTE oversampling to handle the imbalance data. The data used are 16369 data. The training data and the testing data will be taken from user comments MyTelkomsel’s application from the play.google.com site where each comment has a rating in Indonesian Language. This review data will be very useful for companies to make business decisions. This data can be obtained from social media, but social media does not provide a rating feature for every user comment. This research goal is that data from social media such as Twitter or Facebook can also quickly find out the total of the user satisfaction based from the rating from the comment given. The best f1 scores and precisions obtained using 5 classes with LSTM and SMOTE were 0.62 and 0.70 and the best f1 scores and precisions obtained using 3 classes with LSTM and SMOTE were 0.86 and 0.87