z-logo
open-access-imgOpen Access
Applying the GBS technique for the genomic characterization of a Danish population of European hedgehogs (Erinaceus europaeus)
Author(s) -
S. L Rasmussen,
E Yashiro,
E Sverrisdóttir,
K.L Nielsen,
M.B Lukassen,
J. L Nielsen,
T Asp,
C Pertoldi
Publication year - 2019
Publication title -
genetics and biodiversity journal
Language(s) - English
Resource type - Journals
eISSN - 2602-5582
pISSN - 2588-185X
DOI - 10.46325/gabj.v3i2.59
Subject(s) - loss of heterozygosity , genotyping , single nucleotide polymorphism , erinaceus , biology , allele frequency , inbreeding , genetics , population , hardy–weinberg principle , allele , genotype , demography , gene , hedgehog , sociology
The objective of the study was to establish and refine a method for the genomic characterization of European hedgehogs in Denmark using the second-generation genotyping technique, genotyping by sequencing (GBS). Single nucleotide polymorphisms (SNPs) were filtered with a read coverage between 20 - 100 and a maximum number of missing data of 25 %. Individuals with > 25 % missing data were removed yielding a total of 2.4 million SNPs, and after filtering for Minor allele frequency (MAF) >1 %, 2902 SNPs remained. Approximately half of the individuals analysed contained less than 75% of the selected SNPs, and were removed, resulting in a sample size of 30. We estimated inbreeding coefficients (F), observed (HO), expected (HE) and unbiased expected (uHE) heterozygosity and the percent of polymorphic loci (P%). We tested for deviations from Hardy-Weinberg equilibrium (HWE) and patterns of isolation by distance (IBD). We assessed the genetic structure of the sampled individuals based on a Bayesian clustering method, and tested for recent population expansion or decline. We found a P% = 94.5%, a uHE and HE of mean ± SE; 0.31 ± 0.04 and 0.30 ± 0.02, respectively and an HO of 0.290 ± 0.03. The heterozygosity deficiency was reflected in a positive F-value; 0.1 ± 0.01 and a significant deviation for HWE (p 0.05). The significant and positive F-value found, was explained by inbreeding, genetic substructure and low effective population size (Ne) which are all consequences of habitat fragmentation. We failed to detect recent signs of a population bottleneck or expansion. Further studies on a larger scale are needed to obtain a general view of the conservation status of the Danish hedgehog population.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here