
A Predictive Control Model for Master Slave Robotic Manipulator with RBF Neural Network
Author(s) -
Youjian Lei
Publication year - 2021
Publication title -
international journal of circuits, systems and signal processing
Language(s) - English
Resource type - Journals
ISSN - 1998-4464
DOI - 10.46300/9106.2021.15.68
Subject(s) - control theory (sociology) , model predictive control , trajectory , nonlinear system , artificial neural network , controller (irrigation) , computer science , control engineering , process (computing) , stability (learning theory) , mimo , control (management) , engineering , artificial intelligence , channel (broadcasting) , machine learning , computer network , physics , quantum mechanics , astronomy , agronomy , biology , operating system
In recent years, manipulator control has been widely concerned, and its uncertainty is one of the focuses. As we all know, the manipulator is a MIMO nonlinear system, which has the characteristics of severe variable coupling, large time-varying amplitude of parameters and high degree of nonlinearity. Therefore, a lot of uncertain factors must be considered when designing the control algorithm of manipulator system. The predictive control algorithm adopts online rolling optimization, and in the process of optimization, feedback correction is carried out by the difference between the actual output and the reference output. It can iterate the predictive model and suppress the influence of some uncertain disturbances to a certain extent. Therefore, the design of predictive controller for robot is not only of theoretical significance, but also of great practical significance. The trajectory tracking problem is proposed in this paper, and a predictive control method for master slave robotic manipulator with sliding mode controller is designed. In addition, when external disturbances occurred, the approximation errors are compensated by the proposed control method. Finally, The results demonstrate that the stability of the controllers can be improved for the trajectory tracking errors.