z-logo
open-access-imgOpen Access
An Adaptive Weighted Image Denoising Method Based on Morphology
Author(s) -
Jinjuan Wang,
Duan Shan,
Qun Zhou
Publication year - 2021
Publication title -
international journal of circuits, systems and signal processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.156
H-Index - 13
ISSN - 1998-4464
DOI - 10.46300/9106.2021.15.31
Subject(s) - mathematical morphology , noise reduction , filter (signal processing) , artificial intelligence , computer science , noise (video) , image (mathematics) , computer vision , image processing , non local means , median filter , bilateral filter , pattern recognition (psychology)
In its generation, transmission and record, image signal is often interfered by various noises, which have severally affected the visual effects of images; therefore, it is a very important pre-processing step to take proper approaches to reduce noises. Conventional denoising methods have also blurred image edge information while removing noises, which can be overcome by the method based on mathematical morphology. While eliminating different noises from images, it can not only keep clear object edges, but also preserve as many image details as possible and it also has excellent capacities in noise resistance and edge preservation. With image denoising and mathematical morphology as the research subject, this paper analyzes the generation and characteristics of common image noises, studies the basic theories of mathematical morphology and its applications in image processing, discusses the method to select structural elements in mathematical morphology and proposes a filtering algorithm which combines image denoising and mathematical morphology. This method conducts morphological filtering and denoising on noised image with filter cascade and its performance is verified with stimulation testing. The experiment results prove that the approach to build the morphological filter into cascaded filter through series and parallel connection can to a certain extent, affect the effect of common filter while being applied to different image processing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here