
How Varying the Dipole Lengths of a Uniform Linear Array Affects the Performance of an ESPRIT based Direction Finding Algorithm
Author(s) -
Gerald P. Arada
Publication year - 2020
Publication title -
international journal of circuits, systems and signal processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.156
H-Index - 13
ISSN - 1998-4464
DOI - 10.46300/9106.2020.14.121
Subject(s) - toeplitz matrix , coupling (piping) , dipole , matrix (chemical analysis) , algorithm , direction of arrival , computer science , circular buffer , mathematics , physics , telecommunications , engineering , pure mathematics , materials science , mechanical engineering , quantum mechanics , antenna (radio) , composite material , programming language
Popularly used to collect data for the direction-of-arrival estimation of an incident source. Since the dipole elements of the uniform linear array are electromagnetically and mutually coupled, the presence of mutual coupling may degrade the performance of any direction finding algorithms. In order to mitigate mutual coupling, several references introduced modifications of the well-known ESPRIT algorithm. These modifications involve discarding the data collected by linear array at the two ends. However, the assumption of several literature that the mutual coupling matrix to be both Toeplitz and banded are invalid. This is pointed out by the “method of moments” based computer simulation tool used in this paper. The Toeplitz-and-banded coupling-matrix assumption leads to the mutual coupling being mis-modeled. Furthermore, previous studies failed to consider how varying the dipoles’ electrical length affect the performance of the direction-of-arrival estimation under mutual coupling.