
Mathematical Modeling of Heat and Mass Transfer in Heat Pipes in a One-Dimensional Formulation when Cooling Active Phased Antenna Arrays
Author(s) -
S. Radaev
Publication year - 2021
Publication title -
international journal of mechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.16
H-Index - 20
ISSN - 1998-4448
DOI - 10.46300/9104.2021.15.23
Subject(s) - heat pipe , heat transfer , mechanics , thermodynamics , coolant , heat sink , heat transfer coefficient , materials science , work (physics) , mechanical engineering , engineering , physics
The work proposes test one-dimensional models of heat and mass transfer in heat pipes during cooling of active phased antenna arrays, which can be used in processing the test results of flat heat pipes in order to determine their performance characteristics and identify the parameters required for modeling in a more complex setting (for example, in flat and taking into account the presence of several localized sources of heat supply). To take into account the influence of the heat release power on the equilibrium temperature inside the heat pipe, the model has been added to take into account the dependence of the steam saturation temperature on the pressure, which is realized inside the steam pipeline when the heat pipe is heated. Numerous calculations carried out made it possible to refine the mathematical model. In particular, a significant effect on the temperature distribution along the heat pipe is shown, taking into account the dependence of the steam saturation temperature on the pressure in the parawire. It is shown that the introduction of standard functions for the characteristics of the coolant (water) in the liquid and vapor state, as well as taking into account the capillary pressure on temperature, makes it possible to refine the resulting solution.