z-logo
open-access-imgOpen Access
CHARACTERIZATION OF CARBON FIBERS DERIVED FROM THERMALLY STABILIZED POLY(HEXAMETHYLENE ADIPAMIDE) PRECURSOR FIBERS
Author(s) -
Md. Mahbubor Rahman,
Tuba Demirel,
İsmail Karacan
Publication year - 2021
Publication title -
icontech journal of innovative surveys, engineering and technology
Language(s) - English
Resource type - Journals
ISSN - 2717-7270
DOI - 10.46291/icontechvol5iss3pp48-55
Subject(s) - carbonization , materials science , polyamide , fiber , yield (engineering) , chemical engineering , composite material , carbon fibers , polymer chemistry , scanning electron microscope , composite number , engineering
The thermal oxidative stabilization and carbonization processes of poly(hexamethylene adipamide) or (polyamide 66) fibers were accomplished to transform into carbon fibers. Polyamide 66 fibers were pretreated with a ethanol solution of cupric chloride followed by a stabilization process in the air atmosphere. Carbonization experiments were executed at temperatures of 500, 700, 900, and 1100°C utilizing heating rate of 2.5 °C/min. Carbonization experiments were performed at temperatures between 500 and 1100°C employing the rises of 100°C. X-ray diffraction analysis of the carbon fibers shown a highly disordered carbon structure developed during the carbonization process. The values of fiber diameter, linear density, volume density, carbon fiber yield, elemental analysis, and electrical properties revealed a strong dependence on the carbonization temperature. As an insulating material, the polyamide 66 or PA66 precursor was transformed to a semiconducting stage after the thermal stabilization and carbonization processes. The current study demonstrated how processing parameters influence the structure and characteristics of carbon fibers produced from poly(hexamethylene adipamide) fibers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here