
On homomorphism-homogeneous point-line geometries
Author(s) -
Éva Jungábel
Publication year - 2019
Publication title -
reports on mathematical logic
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.101
H-Index - 6
eISSN - 2084-2589
pISSN - 0137-2904
DOI - 10.4467/20842589rm.19.007.10655
Subject(s) - mathematics , homomorphism , line (geometry) , point (geometry) , axiom , endomorphism , homogeneous , combinatorics , discrete mathematics , geometry
A relational structure is homomorphism-homogeneous if every homomorphism between finite substructures extends to an endomorphism of the structure. A point-line geometry is a non-empty set of elements called points, together with a collection of subsets, called lines, in a way that every line contains at least two points and any pair of points is contained in at most one line. A line which contains more than two points is called a regular line. Point-line geometries can alternatively be formalised as relational structures. We establish a correspondence between the point-line geometries investigated in this paper and the firstorder structures with a single ternary relation L satisfying certain axioms (i.e. that the class of point-line geometries corresponds to a subclass of 3-uniform hypergraphs). We characterise the homomorphism-homogeneous point-line geometries with two regular non-intersecting lines. Homomorphism-homogeneous pointline geometries containing two regular intersecting lines have already been classified by Mašulović.