z-logo
open-access-imgOpen Access
2D seismic tomography of Somma- Vesuvius. Description of the experiment and preliminary results.
Author(s) -
Aldo Zollo,
Paolo Gasparini,
G. Biella,
Roberto De Franco,
Berardino Buonocore,
L. Mirabile,
Giuseppe De Natale,
Girolamo Milano,
F. Pingue,
G. Vilardo
Publication year - 1996
Publication title -
annals of geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 60
eISSN - 2037-416X
pISSN - 1593-5213
DOI - 10.4401/ag-3983
Subject(s) - geophone , geology , seismology , impact crater , volcano , tomography , seismic tomography , vertical seismic profile , inversion (geology) , geophysics , tectonics , mantle (geology) , physics , astronomy , optics
A multidisciplinary project for the investigation of Mt. Vesuvius Structure was started in 1993. The core of the project is represented by a high resolution seismic tomography study by using controlled and natura1 sources. The main research objective is to investigate the feeding system of the vo1cano and to retrieve details of the upper crustal structure in the area. A first 2D using seismic experiment was performed in May 1994, with the aim of studing the feasibility of lIsing tomographic techniques for exploring the vo1cano interiors. Particularly, this experiment was designed to obtain information on the optimal sources-receivers configuration and on the depth extension of the volume sampled by shot-generated seismic waves. 66 three-component seismic stations and 16 single-component analogue instruments were installed by several Italian and French groups to record signals generated by three on-land, underground explosions. Sources and geophones were deployed along a 30-km NW-SE profile passing through the volcano crater. Receivers were placed at an average spacing of 250 m in the middle of the recording line and at 500 m outside. The arrival time data base was complemented by first P and S readings of micro earthquakes which occurred in the recent past within the volcano. The first arrival data set was preliminary used to determine the shallow structure of the volcano by applying Thurber's (1983) tomographic inversion technique. This analysis shows evidence for a high-velocity body which extends vertically from about 400 m below the crater down to at least 3000 m and for a shallow 300-500 m thick low-velocity cover which borders the edifice. Data from the distant shot show evidence for arrivals of deep reflected/converted phases and provide information on the deeper structure under the volcano. The results from the interpretation of 2D data are used for planning a 3D tomographic survey which will be cauied out in 1996

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here