z-logo
open-access-imgOpen Access
Evaluation of the seismic hazard parameters for selected regions of the world: the maximum regional magnitude
Author(s) -
Θεόδωρος Μ. Τσάπανος
Publication year - 2001
Publication title -
annals of geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 60
eISSN - 2037-416X
pISSN - 1593-5213
DOI - 10.4401/ag-3615
Subject(s) - magnitude (astronomy) , maximum magnitude , seismic hazard , geology , seismology , earthquake magnitude , tectonics , hazard , hazard analysis , scale (ratio) , statistics , mathematics , physics , geography , geometry , cartography , organic chemistry , chemistry , astronomy , aerospace engineering , scaling , engineering
Parameters of seismic hazard are estimated by the application of the maximum likelihood method. The technique is based on a procedure which utilizes data of different quality, e.g., the ones where the uncertainty in the assessment of the magnitudes is great and those where the magnitudes are computed with great precision. In other words, the data were extracted from both historical (incomplete) and recorded (complete) files. The historical part of the catalogue contains only the strongest events, whereas the complete part can be divided into several subcatalogues each one assumed to be complete above a specified threshold magnitude. Uncertainty in the determination of magnitudes has also been taken into account. The method allow us to estimate the seismic hazard parameters which are the maximum regional magnitude, Mmax , the activity rate, l, of the seismic events and the well known b-value, the slope of the magnitude-frequency relationship. The parameter b, which is interrelated to b (b = bloge), is also obtained. All these parameters are of physical significance. The mean Return Periods, RP, of earthquakes with a certain lower magnitude M ³ m are also determined. The method is applied in some regions of the circum-Pacific belt, which includes various tectonic features, and where catastrophic earthquakes are known from the historical era. The seismic hazard level is also calculated as a function of the form q(Mmax , RP7.5 ) and a relative hazard scale (defined as an index K) is defined for each seismic region. According to this, the investigated regions are classified into five groups of very low, low, intermediate, high and very high seismic hazard levels. This classification is useful for both theoretical and practical reasons and provides a picture of quantitative seismicity

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here