z-logo
Premium
Sources and composition of sediment pore‐water dissolved organic matter in prairie pothole lakes
Author(s) -
Ziegelgruber Kate L.,
Zeng Teng,
Arnold William A.,
Chin Yu-Ping
Publication year - 2013
Publication title -
limnology and oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.7
H-Index - 197
eISSN - 1939-5590
pISSN - 0024-3590
DOI - 10.4319/lo.2013.58.3.1136
Subject(s) - dissolved organic carbon , environmental chemistry , biogeochemical cycle , sediment , pore water pressure , organic matter , total organic carbon , environmental science , surface water , chemistry , hydrology (agriculture) , geology , environmental engineering , geomorphology , geotechnical engineering , organic chemistry
Sediment pore‐water dissolved organic matter (DOM) in two North Dakota prairie pothole lakes was quantified by dissolved organic carbon analysis (DOC) and its composition was characterized as a function of sediment depth for molecular weight distribution (MWD), molar absorptivity at 280 nm ( ɛ 280), and fluorescence properties. Fluorescence excitation emission matrices were further analyzed by creating a Parallel Factor Analysis (PARAFAC) model specific to sedimentary pore‐water DOM. The range of absolute pore‐water DOC concentrations (∼ 26–183 mg C L −1 ) greatly exceeded abundances reported for other wetlands and generally increased with depth. Significant changes occurred in ɛ 280 and fluorescence seasonally. Prairie pothole pore‐water DOM is primarily allochthonous in nature and three ‘humic‐like’ components explained ∼ 90% of total sample fluorescence, while a single ‘non‐humic’ component was responsible for the remaining 10%. The contribution of the non‐humic component, however, was more significant in the top 7 cm of sediment in samples collected in early autumn and is presumably derived from algal precursor material produced by primary production in the water column over the summer. The PARAFAC results corroborate ɛ 280 and MWD changes in pore‐water DOM composition over the growing season. This dynamic process could affect the type of DOM available for biogeochemical processes seasonally.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here