z-logo
Premium
Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp
Author(s) -
Edmunds Peter J.
Publication year - 2011
Publication title -
limnology and oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.7
H-Index - 197
eISSN - 1939-5590
pISSN - 0024-3590
DOI - 10.4319/lo.2011.56.6.2402
Subject(s) - porites , coral , biomass (ecology) , calcification , biology , ocean acidification , reef , effects of global warming on oceans , coral reef , zoology , oceanography , zooxanthellae , ecology , seawater , symbiosis , climate change , geology , medicine , global warming , bacteria , genetics
I tested the hypothesis that the effects of high pCO 2 and temperature on massive Porites spp. (Scleractinia) are modified by heterotrophic feeding (zooplanktivory). Small colonies of massive Porites spp. from the back reef of Moorea, French Polynesia, were incubated for 1 month under combinations of temperature (29.3°C vs. 25.6°C), pCO 2 (41.6 vs. 81.5 Pa), and feeding regimes (none vs. ad libitum access to live Artemia spp.), with the response assessed using calcification and biomass. Area‐normalized calcification was unaffected by pCO 2 , temperature, and the interaction between the two, although it increased 40% with feeding. Biomass increased 35% with feeding and tended to be higher at 25.6°C compared to 29.3°C, and as a result, biomass‐normalized calcification statistically was unaffected by feeding, but was depressed 12–17% by high pCO 2 , with the effect accentuated at 25.6°C. These results show that massive Porites spp. has the capacity to resist the effects on calcification of 1 month exposure to 81.5 Pa pCO 2 through heterotrophy and changes in biomass. Area‐normalized calcification is sustained at high pCO 2 by a greater biomass with a reduced biomass‐normalized rate of calcification. This mechanism may play a role in determining the extent to which corals can resist the long‐term effects of ocean acidification.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here