
A PEG Construction of LDPC Codes Based on the Betweenness Centrality Metric
Author(s) -
I. Bhurtah-Seewoosungkur,
Pierre Clarel Catherine,
K. M. S. Soyjaudah
Publication year - 2016
Publication title -
advances in electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.254
H-Index - 23
eISSN - 1844-7600
pISSN - 1582-7445
DOI - 10.4316/aece.2016.02012
Subject(s) - betweenness centrality , low density parity check code , computer science , metric (unit) , computer network , centrality , theoretical computer science , mathematics , algorithm , decoding methods , engineering , combinatorics , operations management
Progressive Edge Growth (PEG) constructions are usually based on optimizing the distance metric by using various methods. In this work however, the distance metric is replaced by a different one, namely the betweenness centrality metric, which was shown to enhance routing performance in wireless mesh networks. A new type of PEG construction for Low-Density Parity-Check (LDPC) codes is introduced based on the betweenness centrality metric borrowed from social networks terminology given that the bipartite graph describing the LDPC is analogous to a network of nodes. The algorithm is very efficient in filling edges on the bipartite graph by adding its connections in an edge-by-edge manner. The smallest graph size the new code could construct surpasses those obtained from a modified PEG algorithm - the RandPEG algorithm. To the best of the authors' knowledge, this paper produces the best regular LDPC column-weight two graphs. In addition, the technique proves to be competitive in terms of error-correcting performance. When compared to MacKay, PEG and other recent modified-PEG codes, the algorithm gives better performance over high SNR due to its particular edge and local graph properties