
New Boost-Type PFC MF-Vienna PWM Rectifiers with Multiplied Switching Frequency
Author(s) -
D. Floricau,
Tiberiu Tudorache,
L. Kreindler
Publication year - 2015
Publication title -
advances in electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.254
H-Index - 23
eISSN - 1844-7600
pISSN - 1582-7445
DOI - 10.4316/aece.2015.04011
Subject(s) - pulse width modulation , switching frequency , type (biology) , switching power , power (physics) , control theory (sociology) , computer science , electronic engineering , electrical engineering , physics , engineering , voltage , control (management) , ecology , quantum mechanics , artificial intelligence , biology
In this paper new three-level boost-type PFC PWM rectifiers with Multiplied-switching-Frequency (MF) are presented. They can work both at high and low switching frequency for single- and for three-phase unity-power-factor applications. The proposed solutions are named MF-Vienna PWM rectifiers (M=2 or 3) and are based on classical 1F-Vienna topology (M=1), the most popular PWM boost-type PFC concept with three voltage levels. By adding auxiliary active power device(s) to 1F-Vienna circuit and through proper modulation strategies, the ripple frequency present in the input and output passive components can be doubled (M=2) or tripled (M=3). This advantage leads to the reduction of boost inductor and line filter requirements. The operation principle of the 2F-Vienna cell is validated for three-phase PWM rectifier using Voltage Oriented Control (VOC) method