
Wave Concept Iterative Method Validation for 2D Metallic Obstacles Scattering
Author(s) -
Nicolae Lucanu,
Irinel Valentin Pletea,
Ion Bogdan,
H. Baudrand
Publication year - 2012
Publication title -
advances in electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.254
H-Index - 23
eISSN - 1844-7600
pISSN - 1582-7445
DOI - 10.4316/aece.2012.01002
Subject(s) - scattering , computer science , iterative method , acoustics , algorithm , optics , physics
The paper presents an application of the Wave Concept Iterative Process (WCIP) in the case of the study of the scattering of an electromagnetic plane wave by two metallic 2D obstacles. The application is made in order to validate the original method for two classical metallic obstacles diffraction. The case of an infinite circular cylinder is treated first. Modal and iterative convergences are studied. Current density is calculated and compared with the exact solution available for this particular case. The second studied obstacle is an infinite square section scattering obstacle. The 4 faces of the structure are studied independently, mutual influence being not taken into account. Current density results are presented and compared with those issued by the use of other scattering methods for several particular cases