
Edaravone mitigates cognitive impairment and hippocampal injury in juvenile rats with obstructive sleep apnea hypopnea syndrome via regulation of cAMP/PKACREB pathway
Author(s) -
Yongmei Zhao,
Hongli Liu,
Yong Chen,
Kexing Li,
Shouliang Yang
Publication year - 2021
Publication title -
tropical journal of pharmaceutical research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.209
H-Index - 36
eISSN - 1596-5996
pISSN - 1596-9827
DOI - 10.4314/tjpr.v20i11.10
Subject(s) - creb , edaravone , obstructive sleep apnea , oxidative stress , malondialdehyde , brain derived neurotrophic factor , hippocampal formation , intermittent hypoxia , medicine , endocrinology , hypoxia (environmental) , anesthesia , neurotrophic factors , pharmacology , chemistry , biochemistry , receptor , transcription factor , organic chemistry , oxygen , gene
Purpose: To investigate the influence of edaravone on cognitive impairment and hippocampal injury in juvenile rats with obstructive sleep apnea hypopnea syndrome (OSAHS), and the mechanism involved.Methods: Fifty-four young Wistar rats were randomly selected into control, intermittent hypoxia and edaravone groups. The contents of the antioxidants CAT, Mn-SOD, Cu/Zn SOD and oxidative stress products malondialdehyde (MDA) in hippocampus were assayed and compared. The expressions of brain-derived neurotrophic factor (BDNF), Bcl-2, CREB, p-CREB and PKAc were determined.Results: The times taken to cross the target quadrant and the platform; levels of CAT and Mn-SOD, as well as protein levels of BNDF, Bcl-2, p-CREB and PKAc were markedly lower in intermittent hypoxia group than in controls; and MDA contents, 8-OHdG and protein hydroxyl were markedly higher in intermittent hypoxic rats group than in controls. Time taken to cross the platform and quadrant; activities of CAT and Mn-SOD, and protein concentrations of BDNF, Bcl-2, p-CREB and PKAc were markedly higher in the edaravone-treated rats than in intermittent hypoxia rats.Conclusion: Edaravone significantly mitigated cognitive damage and hippocampal lesions in OSAHS rats via a mechanism related to alleviation of oxidative stress and up-regulation of the expressions of p-CREB and its downstream proteins BDNF and Bcl-2. This finding provides a theoretical basis for research and development of new drugs against OSAHS.