
Ruscogenin alleviates palmitic acid-induced endothelial cell inflammation by suppressing TXNIP/NLRP3 pathway
Author(s) -
Hongtao Liu,
Simin Zheng,
Hanzhen Xiong,
Xiaoli Niu
Publication year - 2020
Publication title -
tropical journal of pharmaceutical research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.209
H-Index - 36
eISSN - 1596-5996
pISSN - 1596-9827
DOI - 10.4314/tjpr.v19i8.6
Subject(s) - txnip , viability assay , apoptosis , chemistry , tumor necrosis factor alpha , inflammation , palmitic acid , pharmacology , microbiology and biotechnology , biochemistry , biology , immunology , fatty acid , thioredoxin , oxidative stress
Purpose: To investigate the involvement of ruscogenin in palmitic acid (PA)-induced endothelial cell inflammation.
Method: Cultured human umbilical vein endothelial cells (HUVECs) were divided into five groups: control (normal untreated cells), PA (cell treated with palmitic acid), and PA + ruscogenin (1, 10, or 30 μM). Cell viability and apoptosis rate were determined using MTT (3-(4,5)-dimethylthiahiazo(-z-y1)-3,5- di-phenytetrazolium bromide) and flow cytometry assays, respectively. The levels of cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and monocyte chemo-attractant protein-1 (MCP-1) were determined by an enzyme-linked immunosorbent assay. Western blotting and real-time polymerase chain reaction (RT-PCR) were used to evaluate the underlying mechanisms of action.
Results: PA treatment decreased the viability of HUVECs and induced apoptosis (p < 0.05). Ruscogenin attenuated PA-induced cell death in a dose-dependent manner (p < 0.05). On the other hand, PA induced an increase in IL-1β, TNF-α, ICAM-1, MCP-1, TXNIP (thioredoxin-interacting protein),as well as NLRP3 (nucleotide oligomerization domain-, leucine-rich repeat- and pyrin domain-containing protein 3), all of which were attenuated by ruscogenin (p < 0.05).
Conclusion: Ruscogenin alleviates PA-induced endothelial cell inflammation via TXNIP/NLRP3 pathway, thereby providing an insight into new therapeutic strategies to treat cardiovascular diseases.
Keywords: Ruscogenin, Palmitic acid, Endothelial cells, Inflammation, TXNIP, NLRP3, Cardiovascular diseases