z-logo
open-access-imgOpen Access
Celastrol attenuates fMLP-induced superoxide anion generation, myeloperoxidase production, and elastase release by human neutrophils
Author(s) -
Nipapan Malisorn,
Ammara Chaikan
Publication year - 2021
Publication title -
tropical journal of pharmaceutical research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.209
H-Index - 36
eISSN - 1596-5996
pISSN - 1596-9827
DOI - 10.4314/tjpr.v18i9.3
Subject(s) - superoxide , celastrol , myeloperoxidase , elastase , chemistry , biochemistry , superoxide dismutase , pharmacology , microbiology and biotechnology , immunology , inflammation , enzyme , biology , apoptosis
Purpose: To investigate the anti-inflammatory effect of celastrol via attenuation of formyl-methionylleucyl-phenylalanine (fMLP)-induced superoxide generation, myeloperoxidase production, and elastase release by peripheral blood neutrophils. Methods: Cytotoxicity of celastrol on human peripheral blood neutrophils was investigated using a 2Htetrazolium hydroxide (XTT) assay. Human neutrophils were stimulated with 100-nM fMLP; the effect of celastrol on superoxide generation was determined via ferricytochrome C reduction, the effect on myeloperoxidase production by tetramethylbenzidine oxidation, and the effect on elastase activity by Boc-Ala-ONp hydrolysis. Results: Treatment of human neutrophils with celastrol showed dose-dependent inhibition of fMLPinduced superoxide generation, myeloperoxidase production, and elastase release with half-maximal inhibitory concentration (IC50) values of 5.9 ± 0.1, 1.9 ± 0.2, and 1.5 ± 0.1 µM, respectively. Conclusion: These results indicate that celastrol possesses anti-inflammatory properties via attenuation of fMLP-induced superoxide generation, myeloperoxidase production, and elastase release by peripheral blood neutrophils.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here