z-logo
open-access-imgOpen Access
Biodistribution and pharmacokinetic studies on topically delivered technetium-99m-labeled 5-FU nanogel formulation for management of pre-cancerous skin lesions
Author(s) -
Rema Rajagopalan,
Sanjay Jain,
Ankur Kaul,
Piyush Trivedi
Publication year - 2021
Publication title -
tropical journal of pharmaceutical research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.209
H-Index - 36
eISSN - 1596-5996
pISSN - 1596-9827
DOI - 10.4314/tjpr.v18i9.28
Subject(s) - nanogel , biodistribution , pharmacokinetics , cmax , chemistry , pharmacology , conjugate , distribution (mathematics) , nanocarriers , drug delivery , medicine , biochemistry , organic chemistry , in vitro , mathematical analysis , mathematics
Purpose: To prepare technetium-99m (99mTc)-labelled nanogel loaded with 5-fluorouracil (5-FU) containing synthesized gallic acid-stearylamine (GA-SA) conjugate in order to reduce its systemic toxicity and provide site-specific delivery to skin lesions. Methods: Lipid nanocarrier-based 1 % (w/w) 5-FU nanogel containing GA-SA conjugate was successfully formulated. Parameters that included pH, viscosity and entrapment efficiency were measured. Furthermore, 1 % (w/w) 5-FU nanogel and 1 % (w/w) 5-FU commercial formulations were radiolabelled with 99mTc. The radiolabelled 99mTc-5-FU nanogel and commercial formulations were subjected to successive preclinical assessments with respect to radiochemical stability, biodistribution, and gamma scintigraphy in BALB/c mice, and pharmacokinetic studies in New Zealand albino rabbits. Results: The entrapment efficiency of 5-FU in the nanogel preparation was 82.12 ± 1.2 %. The 5-FU nanogel formulation exhibited excellent radiolabelling efficiency (> 93 %) and high stability. Skin/blood localization ratios of 274.93 and 167.89 were obtained for topical radiolabelled drug-loaded 5-FU nanogel formulation and 5-FU commercial formulation, respectively, after 1 h of administration. Gamma scintigraphy and biodistribution studies showed that topically administered 99mTc-5-FU nanogel was distributed mostly in skin, when compared to marketed 5-FU formulation. Pharmacokinetic studies revealed low maximum activity in the blood (Cmax = 34.20 µg/mL), with low intensity (AUC) for topically administered 99mTc-5-FU nanogel formulation. Conclusion: 5-FU nanogel enhances specific delivery of 5-FU at targeted sites and decreases its toxicity in tissues distant from the site of application. The results suggest that nanogel loaded with 5-FU containing synthesized GA-SA conjugate is a novel effective approach for the treatment of skin lesions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here